Isogeometric Residual Minimization Method (iGRM) with direction splitting for non-stationary advection–diffusion problems
نویسندگان
چکیده
منابع مشابه
The Conjugate Residual Method for Constrained Minimization Problems
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملExpected Residual Minimization Method for Stochastic Linear Complementarity Problems
This paper presents a new formulation for the stochastic linear complementarity problem (SLCP), which aims at minimizing an expected residual defined by an NCP function. We generate observations by the quasi-Monte Carlo methods and prove that every accumulation point of minimizers of discrete approximation problems is a minimum expected residual solution of the SLCP. We show that a sufficient c...
متن کاملA Bundle Method for Solving Convex Non-smooth Minimization Problems
Numerical experiences show that bundle methods are very efficient for solving convex non-smooth optimization problems. In this paper we describe briefly the mathematical background of a bundle method and discuss practical aspects for the numerical implementation. Further, we give a detailed documentation of our implementation and report about numerical tests.
متن کاملCanonical Primal-Dual Method for Solving Non-convex Minimization Problems
A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2020
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2019.06.023